Neues Tool

Prototyp zur Identifikation von Deepfakes entwickelt

Deepfake

Deepfakes breiten sich schnell aus und werden immer schwerer zu entlarven. An der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) entwickelt eine IT-Forensik-Gruppe gemeinsam mit der secunet Security Networks AG ein Tool, das KI-generierte Bilder automatisch und zuverlässig identifiziert.

Die Bundesagentur für Sprunginnovationen SPRIN-D unterstützt das Projekt mit 350.000 Euro.

Anzeige

Deepfakes: Täuschend echte Fälschungen im Netz

Angela Merkel plaudert mit Wladimir Putin im Biergarten. Papst Franziskus steht als DJ am Mischpult. Tom Cruise zeigt sich in enger Umarmung mit Paris Hilton. Diese Fotos kursieren im Netz und werden millionenfach angeklickt – doch es sind realistisch aussehende Fälschungen, sogenannte Deepfakes. „Deepfake-Generatoren werden immer leistungsfähiger und sind zugleich frei zugänglich“, sagt PD Dr. Christian Riess, Leiter der Forschungsgruppe Multimedia Security am Lehrstuhl für IT-Sicherheitsinfrastrukturen. „Dadurch verbreiten sich Fotos und Videos mit manipulierten Inhalten rasant, und sie wirken immer echter.“ Im besten Fall sind sie einfach unterhaltsam. Sie können jedoch auch politischen und sozialen Sprengstoff bergen, wenn die Fälschungen nicht als solche erkannt werden.

Ein Projekt der FAU gegen Deepfake-Manipulation

Genau mit diesem Problem beschäftigt sich ein Projekt an der FAU. Gemeinsam mit der secunet Security Networks AG entwickeln die Erlanger IT-Spezialist/-innen einen universalen Prototyp, der Deepfakes verschiedener KI-Generatoren zuverlässig erkennen soll. „Unser Ansatz unterscheidet sich von anderen Methoden grundlegend“, erklärt Sandra Bergmann, Doktorandin in der Arbeitsgruppe Riess. „Üblicherweise werden Bilderkennungsprogramme trainiert, indem ihnen eine große Zahl verschiedener Beispiele präsentiert werden. Die Software lernt dann, die Bilder zu klassifizieren und echte von KI-generierten zu unterscheiden.“

Der von der FAU und secunet entwickelte Prototyp nutzt die Bildklassifikation ebenfalls. Darüber hinaus greift er auf große vortrainierte neuronale Netze von KI-Generatoren zurück, um Bildmerkmale zu extrahieren. „Der Vorteil ist, dass wir mit unserem Tool auch Bilder prüfen können, die von bislang unbekannten Deepfake-Generatoren erstellt worden sind“, sagt Bergmann. „Damit kann das Tool ad hoc reagieren, ohne den Detektor zuvor mit tausenden von Daten trainiert zu haben.“ Ziel der FAU-Forschenden ist es, möglichst viele Detektoren und Datenspuren zusammenzuführen und den Prototyp damit robust gegenüber Fehlern zu machen.

Anzeige

Zugleich kümmert sich secunet darum, dass das Tool einfach in bestehende digitale Infrastrukturen integriert werden kann und beispielsweise in der Lage ist, Deepfakes auf Social-Media-Plattformen zuverlässig zu kennzeichnen. „Die hohe Zuverlässigkeit bei der Erkennung von Deepfakes ist nur eine Anforderung an die Lösung. Sie muss darüber hinaus schnell zu einer Entscheidung kommen – auch bei mehreren parallelen Anfragen, die eine Anwendung an ein Erkennungssystem stellt“, erklärt Dr. Benjamin Tams, Projektleiter des Vorhabens bei secunet.

Newsletter
Newsletter Box

Mit Klick auf den Button "Jetzt Anmelden" stimme ich der Datenschutzerklärung zu.

SPRIN-D: Förderung von Sprunginnovationen

SPRIN-D ist eine Initiative des Bundesministeriums für Bildung und Forschung und versteht sich als Inkubator für Sprunginnovationen in Deutschland und Europa. Sie identifiziert, validiert, finanziert und betreut Projekte bzw. Vorhaben, die das Potential für Sprunginnovation aufweisen. Im Gegensatz zu reinen Forschungsfinanzierungen will SPRIN-D neue marktfähige Produkte, Technologien, Geschäftsmodelle und Dienstleistungen unterstützen, die das Leben möglichst vieler Menschen nachhaltig verbessern. Für die Entwicklung des Prototyps nutzen die FAU-Forschenden ihre langjährige Erfahrung bei der Deepfake-Detektion und ihre besondere Expertise auf dem Gebiet der KI-gestützten Bildkomprimierung.

(pd/FAU)

Anzeige

Artikel zu diesem Thema

Weitere Artikel

Newsletter
Newsletter Box

Mit Klick auf den Button "Jetzt Anmelden" stimme ich der Datenschutzerklärung zu.