Herausforderungen und Chancen

MLOps: 5 Schritte zur effektiven Operationalisierung

Machine Learning Operations, MLOps, Operationalisierung

In der dynamischen KI-Landschaft sind Machine Learning Operations (kurz: MLOps) der Schlüssel zur Überbrückung der Kluft zwischen Entwicklung und praktischer Umsetzung KI-gestützter Modelle. Aber warum sind so viele Unternehmen zögerlich, diesen vergleichsweise schnell und kostengünstig zu implementierenden Ansatz in die eigenen Arbeitsprozesse zu integrieren?

Thomas Telgheider, Director Solution Consulting DACH bei Informatica, gibt Einblicke ist die MLOps-Welt, zeigt Herausforderungen und Chancen für Unternehmen auf und nennt seine fünf Schritte zur erfolgreichen Operationalisierung.

Anzeige

Herausforderungen bei der Operationalisierung

Eine der größten Herausforderungen ist die Qualifikationslücke, die sich oft beim Übergang vom Analysten zum Data Scientist zeigt. Erschwerend kommt hierbei hinzu, dass Data Engineers und Data Scientists oft nicht koordiniert arbeiten, was in doppelten Arbeitsgängen bei der Datenvorbereitung oder Modellabweichungen resultiert. In den IT-Abteilungen von Unternehmen kann dies dazu führen, dass nicht immer klar ist, für welche Datensets ein bestimmtes Modell geeignet ist. Auch Unterschiede in Datenattributen können zu fehlerhaften Ergebnissen führen.

Aber nicht nur technische Herausforderungen können einer erfolgreichen Implementierung im Weg stehen. Governance-Herausforderungen wie Compliance, regulatorische Anforderungen, Audit-Ansprüche, Versionierung und die Erklärbarkeit von Modellen nehmen zu, wenn KI-Modelle sich in diversen Branchen stärker etablieren.

Datenqualität ist Key

Die Datenqualität und der Zugang zu hochwertigen, strukturierten Daten sind entscheidende Faktoren für den Erfolg. Unternehmen müssen sicherstellen, dass ihre Datenquellen zuverlässig und gut gepflegt sind, das Training und die Auswahl des passenden ML-Modells erfordern zudem gesonderte Expertise. Hier lauern Stolperfallen, denn ein suboptimal gewähltes Modell kann zu ineffizienten Ergebnissen führen. Schließlich müssen, um Effizienzsteigerungen und größere Datensatzverarbeitungen zu ermöglichen, ML-Modelle auch skalierbar sein.

Anzeige

Folgende fünf Schritte sind daher der Weg zum MLOps-Erfolg:

  • Zielklarheit: Der klare Fokus auf unternehmerische Ziele legt den Grundstein für den MLOps-Erfolg. Hierbei gilt es, die individuellen Stärken der Organisation zu nutzen, um maßgeschneiderte KPIs zu definieren.
  • Datenbeschaffung: Ein reibungsloser Datenaustausch zwischen Data Scientists und Ingenieuren ist entscheidend. Die Beschaffung und Integration von Daten in einem zentralen Datenlager schaffen die Basis für den Erfolg.
  • Modellentwicklung: Der kreative Prozess der Modellentwicklung erfordert ein solides Fundament. Die enge Zusammenarbeit von Fachexperten und Datenwissenschaftlern gewährleistet optimale Ergebnisse.
  • Modelleinsatz: Die nahtlose Integration von Modellen in den Geschäftsbetrieb ist ein Schlüssel zum MLOps-Erfolg. Hierbei ist die Validierung anhand von Echtzeitdaten von großer Bedeutung.
  • Überwachung und Anpassung: Der Lebenszyklus von MLOps endet nicht mit der Implementierung. Die fortlaufende Überwachung und Anpassung von Modellen gewährleistet konstante Leistung und Wertsteigerung.
Newsletter
Newsletter Box

Mit Klick auf den Button "Jetzt Anmelden" stimme ich der Datenschutzerklärung zu.

Die greifbaren Vorteile einer effektiven Operationalisierung

Wenn Unternehmen diese Hürden überwinden können, sind die Vorteile hinsichtlich Zukunftsfähigkeit immens. Eine gesteigerte Effizienz durch die Automatisierung von Aufgaben, die zuvor manuell durchgeführt wurden, führt zwangsläufig zu Kosteneinsparungen und stärkt die Arbeitgeberattraktivität – besonders bei Young Professionals. Das Potenzial von Echtzeit-Entscheidungen bietet Unternehmen auch einen klaren Wettbewerbsvorteil: In der Industrie etwa ermöglicht die prädiktive Wartung durch operationalisierte ML-Modelle proaktive Reparatur- und Wartungspläne, die zu weniger ungeplanten Ausfallzeiten führen.

Fazit

MLOps kann als Brücke zwischen der ML-Entwicklung und der Operationalisierung gesehen werden. Obwohl es technische und Governance-bezogene Herausforderungen gibt, sind die Vorteile für Unternehmen, die diesen Ansatz meistern, unbestreitbar. Eine erfolgreiche Implementierung von MLOps erfordert darüber hinaus aber auch einen Shift im Mindset der Beteiligten: Die Bereitschaft zur Zusammenarbeit über Fachbereiche hinweg und die Offenheit für datenbasierte Entscheidungen kommt besonders in tradierten Unternehmen einem kulturellen Wandel gleich. Für Unternehmen, die nach Lösungen suchen, um die Lücke zu schließen, bietet Informatica Unterstützung durch die innovative DSML-Plattform. Diese kohärente Integration von Produkten, Komponenten, Bibliotheken und Frameworks richtet sich in erster Linie an Data Science Professionals wie Expert Data Scientists und ML-Engineers.

www.informatica.com

Anzeige

Weitere Artikel

Newsletter
Newsletter Box

Mit Klick auf den Button "Jetzt Anmelden" stimme ich der Datenschutzerklärung zu.