Daten sind wertvoll, aber die Qualität muss stimmen

Im Zuge der fortgeschrittenen Digitalisierung sind Daten zu einem entscheidenden Faktor für den Geschäftserfolg avanciert. Dabei kommt es jedoch auf die Qualität der Daten an.

Die richtigen Daten sind das A und O im digitalen Geschäftszeitalter, um Entscheidungen zu unterstützen und Prozesse effizienter zu machen. Unternehmen häufen jedoch nicht nur geschäftlich wertvolle Daten an, sondern auch riesige Mengen weniger relevanter Informationen aus dem Geschäftsalltag, die nach einigen Jahren veraltet sind. Ein gängiges Problem sind Datensätze, die Fehler und Lücken aufweisen oder falsch formatiert sind. Der Datenberg wächst weiter durch die Duplizierung von Stammdaten, eine Praxis, die den Überblick über den Datenbestand erschwert und geschäftskritische Daten unnötigen Risiken aussetzt. Die Datenverfügbarkeit für Geschäftsprozesse kann zudem eingeschränkt sein, wenn Daten zwar irgendwo im Umlauf, aber auf Anhieb nicht abrufbar sind. Ein schlechtes Datenmanagement bremst die Produktivität aus, erschwert den Datenschutz, erhöht den Administrationsaufwand und belastet die IT-Ressourcen.

Anzeige

Immer mehr Unternehmen erkennen Daten als strategischen Faktor

In datenintensiven Branchen ist das Problembewusstsein für das Thema Datenqualität meist hoch, allein schon infolge strenger Reglementierungen und Compliance-Vorgaben. Aber auch andere Branchen ziehen inzwischen nach und erkennen die Bedeutung sauberer Daten als wertvolle Grundlage für den Geschäftserfolg.

Der sorgfältige Umgang mit Daten ist mit zunehmender Unternehmensgröße in der Regel aufwändiger. Kleineren Unternehmen mit überschaubarem Datenbestand fällt es oft leichter, die Datenqualität zu gewährleisten, weil Probleme eher ans Tageslicht kommen und schneller behoben sind. Größere Unternehmen tun sich schwer, den riesigen, schnell wachsenden, oft großräumig verteilten Datenbestand zu überschauen. Gleichzeitig ist die Geschäftskontinuität gefährdet, wenn kritische Daten nicht verfügbar sind, und es drohen hohe Geldstrafen bei Compliance-Verstößen.

Eine fortlaufende Pflege des unternehmensweiten Datenbestands, einschließlich konsequenter Qualitätssicherung, ist hier der richtige Ansatz. Unternehmen müssen dabei zunächst im Detail klären, welche Daten für welche Geschäftsprozesse relevant sind. Ein gründlicher Datenaudit zeigt mögliche Probleme auf und legt offen, wo es Nachbesserungsbedarf gibt. Darauf aufbauend lässt sich eine längerfristige, nachhaltige Strategie für Datenmanagement und Qualitätssicherung entwickeln.

Anzeige

Unterschiedliche Anforderungen an die Datenqualität

Für die Konzeption einer soliden Datenstrategie sind die Unternehmensgröße, das Geschäftsmodell und der Geschäftswert der Daten entscheidend. Die benötigte Datenqualität ist auch davon abhängig, welche Anforderungen verschiedene Abteilungen oder Geschäftsprozesse an bestimmte Daten stellen. Sogar innerhalb von Abteilungen oder zwischen Teams kann es unterschiedliche Qualitätserwartungen geben. Bei der Definition der Datenqualitätsziele ist es deshalb hilfreich, sich an Best Practices, Compliance-Vorgaben und Standards in der Branche zu orientieren. Wichtig ist auch, dass ein reibungsloser Datenaustausch zwischen IT-Systemen, Geschäftsbereichen, Kunden, Partnern und Lieferanten möglich ist.

Wenn die Qualitätsanforderungen geklärt sind, ist im nächsten Schritt ein Organisationsrahmen notwendig, damit die Datenstrategie effektiv umgesetzt wird. Moderne Unternehmen setzen hierbei auf eigens geschaffene Positionen für Datenstrategieverantwortliche, die einen sorgsameren, verantwortungsvollen und strategisch zielgerichteten Umgang mit Daten im Unternehmen vorantreiben sollen. Der Chief Data Officer als Neuzugang in der C-Level-Führungsetage ist in Großunternehmen nichts Außergewöhnliches mehr.

Bei den Best Practices für eine zeitgemäße Datenstrategie dreht sich alles um Menschen, Prozesse und Technologie. Alle drei Bestandteile müssen miteinbezogen werden, um den Umgang mit Daten kontinuierlich zu optimieren. Entsprechende Maßnahmen müssen durchdacht sein und den aktuellen Geschäftsanforderungen ebenso wie der zukünftigen Ausrichtung gerecht werden. Angesichts des prognostizierten Datenwachstums ist eine nachhaltige Strategie essenziell.

Newsletter
Newsletter Box

Mit Klick auf den Button "Jetzt Anmelden" stimme ich der Datenschutzerklärung zu.

Umfassendes Reporting und permanenter „Datengesundheitscheck“

Im Rahmen der Evaluierung der richtigen Technologielösung für die Verwaltung, Bereinigung und Transformation von Daten sollte ebenfalls Qualität im Vordergrund stehen. Diese Technologielösung kann durchaus ihren Preis haben, abhängig von Unternehmensgröße, Geschäftsprozessen, Datenvolumen, Datenstruktur und Archivierungsanforderungen. So beginnt der Investitionsbedarf im überschaubaren vierstelligen Bereich, kann aber auch in siebenstellige Regionen vordringen.

Die Marktspitze markieren Lösungen, die sich durch Flexibilität auszeichnen, was Datenqualitätsdefinition, Datenvalidierung, Fehlerbehebung und Ausnahmeregelungen betrifft. Für Transparenz sorgen umfassende Reporting-Tools und automatisch generierte Warnmeldungen, wenn bestimme Vorgaben nicht erfüllt werden. Dieser permanente „Datengesundheitscheck“ erleichtert das Qualitätsmanagement enorm. Automatisierte Prozesse reduzieren den Zeit- und Kostenaufwand, der für die Datenaufbereitung oder Problemlösung mit hohem manuellen Arbeitsbedarf anfallen würde.

Investition in Datenqualität ist unverzichtbar – und zahlt sich aus

Eine umfassende Datenanalyse macht den Mehrwert einer verbesserten Datenqualität sichtbar. Unternehmen, die in eine höhere Datenqualität investieren, gewinnen geschäftlich wertvolle Einblicke durch verlässliche Datenanalysen und sorgen für eine bessere Unterstützung von Geschäftsprozessen. Und der sorgfältige Umgang mit Daten ist vor dem Hintergrund einer sensibilisierten Öffentlichkeit nicht nur aus Imagegründen notwendig. Die Verschärfung des Datenschutzrechts, wie zuletzt durch die Datenschutz-Grundverordnung (DSGVO) der EU, macht ein gewissenhaftes Datenmanagement heute unverzichtbar, um empfindlichen Strafen vorzubeugen. Die Investition in bessere Datenqualität zahlt sich daher in jedem Fall aus: nicht nur aus Compliance-Gründen, sondern als Grundvoraussetzung für den künftigen Geschäftserfolg im datenorientierten digitalen Geschäftszeitalter.

Frank

Schuler

SAP Mentor und Vice President SAP Technical Architecture

Syniti

Anzeige

Artikel zu diesem Thema

Weitere Artikel

Newsletter
Newsletter Box

Mit Klick auf den Button "Jetzt Anmelden" stimme ich der Datenschutzerklärung zu.